Skip to main content

model_util.py

# This file implements ResNet, you don't need to modify anything in this file

import time
import torch
import torch.nn as nn


class BasicModule(nn.Module):
def __init__(self):
super(BasicModule, self).__init__()
self.model_name = str(type(self))

def load(self, path, map_location=None):
self.load_state_dict(torch.load(path, map_location))

def save(self, name=None):
if name is None:
prefix = 'checkpoints/' + self.model_name + '_'
name = time.strftime(prefix + '%m%d_%H:%M:%S.pth')
torch.save(self.state_dict(), name)
return name

def no_grad(self):
for param in self.parameters():
param.requires_grad = False

def with_grad(self):
for param in self.parameters():
param.requires_grad = True

def clear_grad(self):
for param in self.parameters():
param.grad = None


class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_planes, planes, stride=1, activation_fn=nn.ReLU()):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.activation_fn = activation_fn
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)

def forward(self, x):
out = self.activation_fn(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = self.activation_fn(out)
return out


class ResNet(BasicModule):
def __init__(self, block, num_blocks, num_classes=10, activation_fn=nn.ReLU, conv1_size=3):
super(ResNet, self).__init__()
self.in_planes = 64
self.activation_fn = activation_fn(beta=10) if activation_fn == nn.Softplus else activation_fn()

kernel_size, stride, padding = {3: [3, 1, 1], 7: [7, 2, 3], 15: [15, 3, 7]}[conv1_size]
self.conv1 = nn.Conv2d(3, 64, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, activation_fn=self.activation_fn)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, activation_fn=self.activation_fn)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, activation_fn=self.activation_fn)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, activation_fn=self.activation_fn)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.linear = nn.Linear(512 * block.expansion, num_classes)

self.normalize = None

def _make_layer(self, block, planes, num_blocks, stride, activation_fn=nn.ReLU()):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride, activation_fn))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)

def forward(self, x, penu=False):
if self.normalize:
x = self.normalize(x)
out = self.activation_fn(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
if penu:
return out
out = self.linear(out)
return out


def ResNet18(num_classes=10, conv1_size=3, activation_fn=nn.ReLU):
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, conv1_size=conv1_size, activation_fn=activation_fn)